惠州视觉引导机器人爱普生机器人引导定位靠不靠谱
来源网络发布时间:2019-09-10 05:40:04
惠州视觉引导机器人爱普生机器人引导定位靠不靠谱
(1) 在工业检测方面
近几十年来,在工业检测中利用视觉系统的非接触、速度快、精度合适、现场抗干扰能力强等突出的优点,使机器视觉技术得到了广泛的应用,取得了巨大的经济与社会效益。
自动视觉识别检测目前已经用于产品外形和表面缺陷检验,如木材加工检测、金属表面视觉检测、二极管基片检查、印刷电路板缺陷检查、焊缝缺陷自动识别等。这些检测识别系统属于二维机器视觉,技术已经较为成熟,其基本流程是用一个摄像机获取图像,对所获取的图像进行处理及模式识别,检测出所需的内容。
首先我们认识什么是机器视觉,机器视觉就是用机器来代替人的眼睛做一些判断和测量的工作,视觉系统是指通过机器视觉设备即图像摄取装置,将被拍摄的目标转化为图像信息。在传给专门的图像处理系统,根据像素的分布、亮度和颜色等信息,转变为数字化信号,图像系统在对这些信号进行各种运算来抽取目标的特征,进而根据判断的结果来控制现场的设备来进行一系列的操作。
惠州视觉引导机器人爱普生机器人引导定位靠不靠谱
高端1) 通用计算机网络并行处理。这种处理结构采用“多客户机+服务器”的方式,一个图像传感器对应一台客户机,服务器实现信息的合成,图像处理的大部分工作由软件来完成。该结构虽然比较庞大,但升级维护方便、实时性较好。2) 数字信号处理器(dsp)。dsp是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是将接收到的模拟信号转换为“0”或“1”的数字信号,再对数字信号进行修改、***和强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式,其实时运行速度远远超过通用微处理器。但是,dsp的体系仍是串行指令执行系统,而且只是对某些固定的运算进行硬件优化,故不能满足众多的算法要求。惠州视觉引导机器人爱普生机器人引导定位靠不靠谱然而,陀螺仪的天花板已经到来。缺乏更多维度的数据,缺少更加精确的数据,使得陀螺仪在需要更高精度的vr、机器人等领域,已难堪大任。
对目标进行识别提取的时候,首先是要考虑如何自动地将目标物从背景中分离出来。适用于图像背景和目标灰度值区别明显的情况;自适应阈值分割算法,适用于目标与背景的灰度值区别不明显的情况;多区域阈值法,适用于目标与背景在不同区域区别较大的情况。上述各种滤波方法中,频域变换复杂,运算代价较高;空域滤波算法采用各种模板对图像进行卷积运算。直接灰度变换法通过对图像每一个像素按照某种函数进行变换后得到增强图像,变换函数一般多采用线性函数、分段线性函数、指数函数、对数函数等,运算简单,在满足处理功能的前提下实时性也较高。近年来,数学形态学方法[43-44]、小波方法[45-47]用于图像的去噪,取得了较好的效果。
然而,陀螺仪的天花板已经到来。缺乏更多维度的数据,缺少更加精确的数据,使得陀螺仪在需要更高精度的vr、机器人等领域,已难堪大任。
随着超大规模集成电路制造工艺技术的发展,cmos图像传感器得到迅速发展。cmos图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。目前,cmos图像传感器以其良好的集成性、低功耗、高速传输和宽动态范围等特点在高分辨率和高速场合得到了广泛的应用。
(2) 在医学上的应用
在医学领域,机器视觉主要用于医学辅助诊断。首先采集核磁共振、超声波、激光、x射线、γ射线等对人体检查记录的图像,再利用数字图像处理技术、信息融合技术对这些医学图像进行分析、描述和识别,最后得出相关信息,对辅助医生诊断人体病源大小、形状和异常,并进行有效治疗发挥了重要的作用。不同医学影像设备得到的是不同特性的生物组织图像,如x射线反映的是骨骼组织,核磁共振影像反映的是有机组织图像,而医生往往需要考虑骨骼有机组织的关系,因而需要利用数字图像处理技术将两种图像适当地叠加起来,以便于医学分析。
(3) 交通监控领域中的应用
智能交通监控领域中,在重要的十字路口安放摄像头,就可以利用摄像头的快速拍照功能,实现对违章、逆行等车牌的车牌进行自动识别、存贮,以便相关的工作人员进行查看。
(4) 在桥梁检测领域中的应用
人工检测法和桥检车法都是依靠人工用肉眼对桥梁表面进行检测,其速度慢,效率低,漏检率高,实时性差,影响交通,存在安全隐患,很难大幅应用;无损检测包括激光检测、超声波检测以及声发射检测等多种检测技术,它们仪器昂贵,测量范围小,不能满足日益发展的桥梁检测要求;智能化检测有基于导电性材料的混凝土裂缝分布式自动检测系统和智能混凝土技术,也有最前沿的基于机器视觉的检测方法。导电性材料技术虽然使用方便,设备简单,成本低廉,但是均需要事先在混凝土结构上涂刷或者埋设导电性材料进行检测,而且智能混凝土技术还无法确定裂缝位置、裂缝宽度等一系列问题距实用化还有较长的距离;而基于机器视觉的检测方法是利用ccd相机获取桥梁表观图片,然后运用计算机处理后自动识别出裂缝图像,并从背景中分离出来然后进行裂缝参数的计算的方法,它具有便捷、直观、精确、非接触、再现性好、适应性强、灵活性高、成本低廉的优点,能解放劳动力,排除人为干扰,具有很好的应用前景。
据统计,混凝土桥梁的损坏有90%以上都是由裂缝引起的,因此对桥梁的健康检测主要是对桥梁表观的裂缝进行检测与测量。基于机器视觉的桥梁检测技术主要包括三部分内容:桥梁表观图像的获取技术、基于图像的裂缝自动识别理论与算法以及基于图像的裂缝宽度等病害程度定量化测量方法。
基于机器视觉的自动化、智能化检测技术已经在道路、隧道上得到了成功应用,在桥梁上也得到了初步的应用,但主要集中在视线开阔的高空混凝土构件表观图像获取技术上,在病害的自动识别方面仍停留在理论研究阶段,还无法应用于实际工程当中。
针对量大面广的混凝土梁体,智能化视频桥梁检测车进入理论与关键部件模型的研制阶段,但是受到桥梁细小裂缝自动识别与清晰图像快速化获取难度大的限制,目前离达到实用化程度的要求还相距甚远。